EKSPLORASI KAPASITAS PENGKODEAN AMPLITUDO UNTUK MODEL QUANTUM MACHINE LEARNING

Authors

  • Rabiatul Adawiyah Universitas Sains dan Teknologi Komputer
  • Munifah Universitas Sains dan Teknologi Komputer

DOI:

https://doi.org/10.51903/informatika.v3i1.232

Keywords:

Machine Learning, Pengkodean Amplitudo, Quantum Machine Learning, Quantum Computation, TensorFlow Quantum.

Abstract

Komputasi kuantum melakukan perhitungan dengan menggunakan fenomena fisik dan prinsip mekanika kuantum untuk memecahkan masalah. Bentuk komputasi ini secara teoritis telah terbukti memberikan percepatan pada beberapa masalah pemrosesan modern. Perkembangan baru dalam teknologi kuantum mulai bermunculan, dan penerapan model pembelajaran untuk perangkat baru ini terus berkembang. Dengan banyak antisipasi pemanfaatan fenomena kuantum di bidang Machine Learning telah menjadi jelas. Penelitian ini mengembangkan model kerangka kerja perangkat lunak TensorFlow Quantum (TFQ) untuk tujuan machine learning. Kedua model yang dikembangkan memanfaatkan teknik pengkodean informasi dari pengkodean amplitudo untuk penyusunan keadaan dalam model pembelajaran kuantum. Tujuan dari penelitian ini adalah mengeksplorasi kapasitas pengkodean amplitudo untuk menyediakan persiapan keadaan yang diperkaya dalam metode pembelajaran dan analisis mendalam tentang properti data yang memberikan wawasan tentang data pelatihan menggunakan Variational Quantum Classifier (VQC). Munculnya metode baru ini menimbulkan pertanyaan tentang cara terbaik menggunakan alat ini, tujuannya adalah untuk memberikan beberapa penjelasan ikhtisar untuk keadaan machine learning kuantum yang dapat diterapkan mengingat kendala perangkat yang sebenarnya. Hasil penelitian ini menunjukkan ada keuntungan yang jelas untuk menggunakan pengkodean amplitudo dibandingkan metode lain seperti ditunjukkan menggunakan jaringan saraf klasik kuantum hibrid di TFQ. Selain itu, ada beberapa langkah prapemrosesan yang dapat menghasilkan lebih banyak data kaya fitur saat menggunakan VQC, pada dasarnya teorema makan siang tidak gratis berlaku untuk metode pembelajaran kuantum seperti halnya dalam teknik klasik. Informasi meskipun dikodekan dalam bentuk kuantum tidak mengubah langkah-langkah penyiapan data tetapi melibatkan cara-cara baru untuk memahami dan mengapresiasi metode-metode baru ini. Pekerjaan masa depan di bidang ini akan membutuhkan perluasan ke dalam teknik klasifikasi multikelas yang cukup dikembangkan untuk dapat diterapkan dalam pekerjaan seperti ini.

References

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, OndˇrejˇCertík, Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, ShivamVats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R.Terrel, Štˇepán Rouˇcka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing inpython. PeerJ Computer Science, 3:e103, January 2017.
Benioff, Paul. "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines." Journal of statistical physics 22, no. 5 (1980): 563-591.
Berthiaume, André, and Gilles Brassard. "Oracle quantum computing." Journal of modern optics 41, no. 12 (1994): 2521-2535.
Boneh, Dan, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry. "Random oracles in a quantum world." In International Conference on the Theory and Application of Cryptology and Information Security, pp. 41-69. Springer, Berlin, Heidelberg, 2011.
Britt, Keith A., and Travis S. Humble. “High-performance computing with quantum processing units.” ACM Journal on Emerging Technologies in Computing Systems (JETC) 13, no. 3 (2017): 1-13.
Caruana, Rich, and Alexandru Niculescu-Mizil. "An empirical comparison of supervised learning algorithms." In Proceedings of the 23rd international conference on Machine learning, pp. 161-168. 2006.
Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. "SMOTE: synthetic minority over-sampling technique." Journal of artificial intelligence research 16 (2002): 321-357.
Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20, no. 3 (1995): 273-297.
Cory, David G., Amr F. Fahmy, and Timothy F. Havel. "Ensemble quantum computing by NMR spectroscopy." Proceedings of the National Academy of Sciences 94, no. 5 (1997): 1634-1639.
Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of control, signals and systems 2, no. 4 (1989): 303-314.
Deutsch, David, and Richard Jozsa. "Rapid solution of problems by quantum computation." Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439, no. 1907 (1992): 553-558.
Ge, Rong, Furong Huang, Chi Jin, and Yang Yuan. "Escaping from saddle points— online stochastic gradient for tensor decomposition." In Conference on Learning Theory, pp. 797-842. 2015.
Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. Vol. 1, no. 2. Cambridge: MIT press, 2016.
Hunter, John D. "Matplotlib: A 2D graphics environment." Computing in science & engineering 9, no. 3 (2007): 90-95.
Kantardzic, Mehmed. Data mining: concepts, models, methods, and algorithms. John Wiley & Sons, 2011.
Knill, Emanuel, Raymond Laflamme, Rudy Martinez, and Camille Negrevergne. "Benchmarking quantum computers: the five-qubit error correcting code." Physical Review Letters 86, no. 25 (2001): 5811.
Kubat, Miroslav, and Stan Matwin. "Addressing the curse of imbalanced training sets: one-sided selection." In Icml, vol. 97, pp. 179-186. 1997.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521, no. 7553 (2015): 436-444.
Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. "Quantum principal component analysis." Nature Physics 10, no. 9 (2014): 631-633.
MacKay, David JC. "Hyperparameters: optimize, or integrate out?." In Maximum entropy and bayesian methods, pp. 43-59. Springer, Dordrecht, 1996.
MacQueen, James. "Some methods for classification and analysis of multivariate observations." In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, no. 14, pp. 281-297. 1967.
Makhlin, Yuriy, Gerd Scöhn, and Alexander Shnirman. "Josephson-junction qubits with controlled couplings." nature 398, no. 6725 (1999): 305-307.
Montanaro, Ashley. "Quantum algorithms: an overview." npj Quantum Information 2, no. 1 (2016): 1-8.
Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." In ICML. 2010.
Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002): 558-559.
Patra, Bishnu, Rosario M. Incandela, Jeroen PG Van Dijk, Harald AR Homulle, Lin Song, Mina Shahmohammadi, Robert Bogdan Staszewski et al. "Cryo-CMOS circuits and systems for quantum computing applications." IEEE Journal of Solid- State Circuits 53, no. 1 (2017): 309-321.
Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Preskill, John. "Reliable quantum computers." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, no. 1969 (1998): 385-410.
Rebentrost, Patrick, Masoud Mohseni, and Seth Lloyd. "Quantum support vector machine for big data classification." Physical review letters 113, no. 13 (2014): 130503.
Rebentrost, Patrick, Masoud Mohseni, and Seth Lloyd. "Quantum support vector machine for big data classification." Physical review letters 113, no. 13 (2014): 130503.
Robbins, Herbert, and Sutton Monro. "A stochastic approximation method." The annals of mathematical statistics (1951): 400-407.
Shor, Peter W. "Algorithms for quantum computation: discrete logarithms and factoring." In Proceedings 35th annual symposium on foundations of computer science, pp. 124-134. Ieee, 1994.
Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine learning research 15, no. 1 (2014): 1929- 1958.
Wold, Svante, Kim Esbensen, and Paul Geladi. "Principal component analysis." Chemometrics and intelligent laboratory systems 2, no. 1-3 (1987): 37-52.
Xiao, Jing, YuPing Yan, Jun Zhang, and Yong Tang. "A quantum-inspired genetic algorithm for k-means clustering." Expert Systems with Applications 37, no. 7 (2010): 4966-4973.
Xu, Rui, and Donald Wunsch. "Survey of clustering algorithms." IEEE Transactions on neural networks 16, no. 3 (2005): 645-678.
Zeng, William, and Bob Coecke. "Quantum algorithms for compositional natural language processing." arXiv preprint arXiv:1608.01406 (2016).
Zhu, Xiaojin Jerry. Semi-supervised learning literature survey. University of Wisconsin- Madison Department of Computer Sciences, 2005.

Downloads

Published

2023-05-19